p-group, metabelian, nilpotent (class 3), monomial
Aliases: C24.2Q8, C22⋊C8.3C4, (C22×C8).4C4, (C2×C4).37C42, C23.41(C4⋊C4), C4.23(C23⋊C4), (C22×C4).181D4, C24.4C4.5C2, C22.2(C8.C4), C2.5(C4.C42), (C23×C4).191C22, C2.5(C23.9D4), C2.4(C4.10C42), C22.43(C2.C42), (C2×C22⋊C8).4C2, (C22×C4).93(C2×C4), (C2×C4).298(C22⋊C4), SmallGroup(128,25)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.2Q8
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e4=dc=cd, f2=bcde2, ab=ba, ac=ca, faf-1=ad=da, ae=ea, bc=cb, ebe-1=bd=db, fbf-1=bcd, ce=ec, cf=fc, de=ed, df=fd, fef-1=ace3 >
Subgroups: 200 in 92 conjugacy classes, 34 normal (14 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, C23, C23, C23, C2×C8, M4(2), C22×C4, C22×C4, C22×C4, C24, C22⋊C8, C22⋊C8, C22×C8, C2×M4(2), C23×C4, C2×C22⋊C8, C24.4C4, C24.2Q8
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C42, C22⋊C4, C4⋊C4, C2.C42, C23⋊C4, C8.C4, C4.10C42, C4.C42, C23.9D4, C24.2Q8
(1 17)(2 18)(3 19)(4 20)(5 21)(6 22)(7 23)(8 24)
(2 18)(4 20)(6 22)(8 24)(9 13)(10 31)(11 15)(12 25)(14 27)(16 29)(26 30)(28 32)
(1 21)(2 22)(3 23)(4 24)(5 17)(6 18)(7 19)(8 20)(9 30)(10 31)(11 32)(12 25)(13 26)(14 27)(15 28)(16 29)
(1 17)(2 18)(3 19)(4 20)(5 21)(6 22)(7 23)(8 24)(9 26)(10 27)(11 28)(12 29)(13 30)(14 31)(15 32)(16 25)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 28 7 30 5 32 3 26)(2 27 24 12 6 31 20 16)(4 25 18 10 8 29 22 14)(9 17 11 23 13 21 15 19)
G:=sub<Sym(32)| (1,17)(2,18)(3,19)(4,20)(5,21)(6,22)(7,23)(8,24), (2,18)(4,20)(6,22)(8,24)(9,13)(10,31)(11,15)(12,25)(14,27)(16,29)(26,30)(28,32), (1,21)(2,22)(3,23)(4,24)(5,17)(6,18)(7,19)(8,20)(9,30)(10,31)(11,32)(12,25)(13,26)(14,27)(15,28)(16,29), (1,17)(2,18)(3,19)(4,20)(5,21)(6,22)(7,23)(8,24)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,25), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,28,7,30,5,32,3,26)(2,27,24,12,6,31,20,16)(4,25,18,10,8,29,22,14)(9,17,11,23,13,21,15,19)>;
G:=Group( (1,17)(2,18)(3,19)(4,20)(5,21)(6,22)(7,23)(8,24), (2,18)(4,20)(6,22)(8,24)(9,13)(10,31)(11,15)(12,25)(14,27)(16,29)(26,30)(28,32), (1,21)(2,22)(3,23)(4,24)(5,17)(6,18)(7,19)(8,20)(9,30)(10,31)(11,32)(12,25)(13,26)(14,27)(15,28)(16,29), (1,17)(2,18)(3,19)(4,20)(5,21)(6,22)(7,23)(8,24)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,25), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,28,7,30,5,32,3,26)(2,27,24,12,6,31,20,16)(4,25,18,10,8,29,22,14)(9,17,11,23,13,21,15,19) );
G=PermutationGroup([[(1,17),(2,18),(3,19),(4,20),(5,21),(6,22),(7,23),(8,24)], [(2,18),(4,20),(6,22),(8,24),(9,13),(10,31),(11,15),(12,25),(14,27),(16,29),(26,30),(28,32)], [(1,21),(2,22),(3,23),(4,24),(5,17),(6,18),(7,19),(8,20),(9,30),(10,31),(11,32),(12,25),(13,26),(14,27),(15,28),(16,29)], [(1,17),(2,18),(3,19),(4,20),(5,21),(6,22),(7,23),(8,24),(9,26),(10,27),(11,28),(12,29),(13,30),(14,31),(15,32),(16,25)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,28,7,30,5,32,3,26),(2,27,24,12,6,31,20,16),(4,25,18,10,8,29,22,14),(9,17,11,23,13,21,15,19)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | ··· | 4H | 8A | ··· | 8H | 8I | ··· | 8P |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | ··· | 8 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 8 | ··· | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | - | + | ||||
image | C1 | C2 | C2 | C4 | C4 | D4 | Q8 | C8.C4 | C23⋊C4 | C4.10C42 |
kernel | C24.2Q8 | C2×C22⋊C8 | C24.4C4 | C22⋊C8 | C22×C8 | C22×C4 | C24 | C22 | C4 | C2 |
# reps | 1 | 1 | 2 | 8 | 4 | 3 | 1 | 8 | 2 | 2 |
Matrix representation of C24.2Q8 ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
9 | 0 | 0 | 0 | 0 | 0 |
0 | 15 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
13 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[9,0,0,0,0,0,0,15,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,16,0],[0,13,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,1,0,0,0,0,0,0,1,0,0] >;
C24.2Q8 in GAP, Magma, Sage, TeX
C_2^4._2Q_8
% in TeX
G:=Group("C2^4.2Q8");
// GroupNames label
G:=SmallGroup(128,25);
// by ID
G=gap.SmallGroup(128,25);
# by ID
G:=PCGroup([7,-2,2,-2,2,2,-2,2,56,85,120,758,520,1018,360,3924,242]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^4=d*c=c*d,f^2=b*c*d*e^2,a*b=b*a,a*c=c*a,f*a*f^-1=a*d=d*a,a*e=e*a,b*c=c*b,e*b*e^-1=b*d=d*b,f*b*f^-1=b*c*d,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=a*c*e^3>;
// generators/relations